China OEM T39177 V-Ribbed Deflection Guide Belt Idler Pulley 11287800562 7800562 for CZPT with Hot selling

Product Description

BASIC INFORMATION

Description T39177 V-Ribbed Deflection Xihu (West Lake) Dis. Belt Idler Pulley 1128780 0571   780 0571  for NISSAN
OE Number T39177 / 11927AX571
Size Outer Diameter1: 84 mm
Width1: 22 mm
Width2:  mm
Brand SI, PPB
Weight 0.292 Kgs
Place of Origin ZHangZhoug, China
Certification ISO9
KAVO PARTS : DTP-6514
MDR : MAT-4104
STELLOX : 03-40802-SX

APPLICABLE CAR MODELS

Vehicle Models Active Years Engine Displacement Power Cons.Type
NISSAN MICRA C+C III (K12) 1.4 16V 2005- CR14DE 1386 65 Convertible
NISSAN MICRA III (K12) 1.0 16V 2003-2571 CG10DE 998 48 Hatchback
NISSAN MICRA III (K12) 1.2 16V 2003-2571 CG12DE,CR12DE 1240 59 Hatchback
NISSAN MICRA III (K12) 1.2 16V 2003-2571 CG12DE,CR12DE 1240 48 Hatchback
NISSAN MICRA III (K12) 1.4 16V 2003-2571 CR14DE 1386 65 Hatchback
NISSAN NOTE (E11, NE11) 1.4 2006-2012 CR14DE 1386 65 MPV

DETAILED PICTURES

PACKAGING & SHIPPING

Packaging Details 1 piece in a single box
30 boxes in a carton
40 cartons in a pallet
Nearest Port ZheJiang or HangZhou
Lead Time For stock parts: 1-5 days.
If no stock parts:
<500 pcs: 15-30 days
≥500 pcs: to be negotiated.

OUR SERVICES
– We have more than 20 years experience in auto bearings fields.
– Excellent quality control is 1 of our main principles
– We offer OEM service, accept customer label, develop the product with your drawings or samples
– Any questions will get response within 24 hours.

FAQ

1.How do you make our business long-term and good relationship? 
– We keep good quality and competitive price to ensure our customers benefit ;
– We respect every customer as our friend and we sincerely do business and make friends with them,
  no matter where they come from.

 

2. Do you test all your goods before delivery?
– Yes, we have 100% test before delivery

 

3. What is your terms of payment?
– T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages
before you pay the balance.

4. What is your terms of delivery?
– EXW, FOB, CFR, CIF, DDU.

 

After-sales Service: 24 Hours
Warranty: 1 Year / 30000-50000kms
Type: Tensioner Bearing
Material: Chrome Steel
Tolerance: P0
Certification: ISO9001, TS16949
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

idler pulley

How do you select the right idler pulley configuration for a specific task?

Selecting the appropriate idler pulley configuration for a specific task involves considering several factors. Here are the key steps to guide you in the selection process:

1. Identify System Requirements:

Understand the specific requirements of the task or application. Determine the type of belt or chain being used, the power transmission requirements, the operating conditions (such as temperature, speed, and load), and any specific constraints or limitations.

2. Determine Belt or Chain Type:

Identify the type and specifications of the belt or chain being used in the system. This includes factors such as the belt width, pitch, tooth profile (for timing belts), and chain size. Knowing the characteristics of the belt or chain will help in selecting an idler pulley that is compatible and optimized for that specific type.

3. Consider Pulley Material and Construction:

Select a pulley material that is suitable for the task at hand. Common options include steel, cast iron, aluminum, and various plastics. Consider factors such as the required strength, durability, corrosion resistance, and the environment in which the pulley will be operating.

4. Determine Pulley Size and Configuration:

Calculate or determine the appropriate pulley size, including the diameter and width. Consider factors such as the desired belt tension, the required wrap angle (the contact area between the pulley and the belt), and any specific clearance or spacing requirements within the system.

5. Assess Bearing and Shaft Requirements:

Consider the bearing and shaft requirements for the idler pulley. Determine the load capacity, rotational speed, and any specific mounting or attachment considerations. Select bearings and shafts that can handle the anticipated loads and provide smooth operation.

6. Consult Manufacturer Recommendations:

Refer to the manufacturer’s recommendations or specifications for the idler pulley. Manufacturers often provide guidelines and technical data for their products, including load capacity charts, speed limits, and other relevant information. Ensure that the selected idler pulley aligns with these recommendations.

7. Evaluate Cost and Availability:

Consider the cost and availability of the idler pulley. Evaluate different suppliers and compare prices, ensuring that the selected pulley offers a good balance of cost-effectiveness and quality. Additionally, ensure that the idler pulley is readily available when needed.

8. Installation and Maintenance:

Lastly, consider the installation and maintenance requirements of the idler pulley. Ensure that it can be easily installed within the system and that any necessary adjustments or maintenance can be performed without significant hassle.

By following these steps and considering the specific requirements of the task or application, you can select the right idler pulley configuration that ensures proper tensioning, reliable power transmission, and optimal performance in your specific task.

idler pulley

Can idler pulleys withstand continuous use and high-speed rotation?

Idler pulleys are designed to withstand continuous use and high-speed rotation in various applications. Here’s a detailed explanation of the factors that contribute to the ability of idler pulleys to withstand continuous use and high-speed rotation:

1. Material Selection:

The choice of materials for idler pulleys is crucial in determining their ability to withstand continuous use and high-speed rotation. Idler pulleys are commonly made from durable materials such as steel, aluminum, or engineered plastics. These materials offer high strength, wear resistance, and dimensional stability. The selection of materials depends on factors such as the load capacity, operating conditions, and rotational speed requirements of the specific application.

2. Bearing Design:

The bearing design used in idler pulleys plays a vital role in their ability to handle continuous use and high-speed rotation. High-quality bearings with appropriate load ratings and speed capabilities are selected to support the rotational motion of the pulley. The bearing design ensures smooth operation, minimizes friction, and provides reliable support for the pulley shaft under continuous and high-speed conditions.

3. Heat Dissipation:

During high-speed rotation, idler pulleys can generate heat due to friction. Adequate heat dissipation mechanisms are incorporated into the design to prevent excessive heat buildup. This can include features such as cooling fins, ventilation holes, or the use of heat-resistant materials. Effective heat dissipation helps maintain the integrity of the idler pulleys and prevents overheating that could lead to premature wear or failure.

4. Load Capacity:

Idler pulleys are designed to handle specific load capacities, which include both radial and axial loads. The load capacity of an idler pulley is determined by factors such as the size, material, and bearing selection. Manufacturers provide load capacity guidelines to ensure that the idler pulleys can withstand continuous use and high-speed rotation without excessive stress or deformation.

5. Precision Manufacturing:

Idler pulleys are manufactured with precision to ensure proper balance, concentricity, and dimensional accuracy. The precise manufacturing process helps minimize vibration, wobbling, and noise during high-speed rotation. It also enhances the overall stability and performance of the idler pulley under continuous use.

6. Quality Control:

Idler pulleys undergo rigorous quality control measures during the manufacturing process. These measures include inspections, testing, and adherence to industry standards to ensure that the pulleys meet the required specifications. Quality control measures help ensure the reliability, durability, and performance of idler pulleys during continuous use and high-speed rotation.

Overall, idler pulleys are designed and engineered to withstand continuous use and high-speed rotation in various applications. Through careful material selection, bearing design, heat dissipation, load capacity considerations, precision manufacturing, and quality control measures, idler pulleys can reliably perform their intended functions even under demanding operating conditions.

idler pulley

How does the size and diameter of an idler pulley affect its performance?

The size and diameter of an idler pulley play a significant role in determining its performance characteristics. Here’s a detailed explanation of how the size and diameter of an idler pulley affect its performance:

1. Tension and Belt Engagement:

The size and diameter of an idler pulley impact the tension and engagement of the belt. A larger idler pulley will create more belt wrap around its circumference, resulting in increased belt contact and improved grip. This helps to maintain proper tension in the belt and prevent slippage, especially in high-torque applications. Conversely, a smaller idler pulley may have less belt wrap, leading to reduced grip and potentially lower tension.

2. Belt Speed:

The size and diameter of an idler pulley affect the speed at which the belt travels. A larger idler pulley will cover a greater distance per revolution, resulting in a higher belt speed. This can be advantageous in applications where increased speed is desired. Conversely, a smaller idler pulley will cover a shorter distance per revolution, leading to a slower belt speed.

3. Belt Flexibility:

The size and diameter of an idler pulley impact the flexibility of the belt. A larger idler pulley allows for a larger bend radius, reducing the stress on the belt and improving its durability. It also minimizes the risk of excessive bending or flexing that could lead to premature wear or failure. In contrast, a smaller idler pulley may require the belt to bend more sharply, potentially increasing the risk of damage or wear.

4. System Clearance:

The size and diameter of an idler pulley affect the overall clearance in the mechanical system. In tight spaces or constrained environments, a smaller idler pulley may be preferred, as it requires less clearance. Conversely, a larger idler pulley may require additional space to accommodate its size.

5. Load Distribution:

The size and diameter of an idler pulley impact its ability to distribute the load across the belt. A larger idler pulley can distribute the load over a larger surface area, reducing the stress on the belt and other components. It helps to minimize wear and prolong the life of the system. On the other hand, a smaller idler pulley concentrates the load on a smaller area, potentially increasing the risk of localized wear or failure.

6. Bearing Life and Friction:

The size and diameter of an idler pulley influence the bearing life and friction within the system. Larger idler pulleys typically have larger bearings, which can handle higher loads and exhibit improved durability. They also tend to generate lower friction, leading to reduced heat and wear. In contrast, smaller idler pulleys may have smaller bearings that may have limitations in terms of load capacity and friction.

It’s important to note that the specific requirements for size and diameter of an idler pulley will depend on the application and the intended function within the mechanical system. Factors such as belt type, load requirements, speed, and space constraints should be considered when selecting the appropriate size and diameter of an idler pulley for optimal performance.

China OEM T39177 V-Ribbed Deflection Guide Belt Idler Pulley 11287800562 7800562 for CZPT   with Hot selling	China OEM T39177 V-Ribbed Deflection Guide Belt Idler Pulley 11287800562 7800562 for CZPT   with Hot selling
editor by CX

2023-10-07

Recent Posts